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Medical images 
Computer vision methods have long been employed to 
automatically analyze biomedical images.  

 

 

 

 

 

 

Deep learning provides new methods to analyse (huge 
amount of) medical images: performing classification, 
segmentation, detection, …   



Machine Learning for Medical Images 

James A. Nichols, Hsien W. Herbert Chan, Matthew A. B. Baker, Machine learning: applications 
of artificial intelligence to imaging and diagnosis, Biophys Rev (2019) 11:111–118 



Many architectures, many models.. 

• Data quality and availability 

• Transfer learning 

 

In the case of medical datasets, it is common to 
use a pre-trained ConvNet on a very large 
dataset (e.g. ImageNet, which contains 1.2 
million images with 1000 categories), either as 
an initialization, or a fixed feature extractor for 
the task of interest. 



Transfer Learning 

• ConvNet as fixed feature extractor  
Take a ConvNet pretrained on ImageNet, remove the last fully-connected layer (this 
layer’s outputs are the 1000 class scores for a different task like ImageNet), then treat 
the rest of the ConvNet as a fixed feature extractor for the new dataset. 

• Fine-tuning the ConvNet  
The second strategy is to not only replace and retrain the classifier on top of the 
ConvNet on the new dataset, but to also fine-tune the weights of the pretrained 
network by continuing the backpropagation.  

• Pretrained models    
Since modern ConvNets take 2-3 weeks to train across multiple GPUs on ImageNet, it 

is common to see people release their final ConvNet checkpoints. E.g. the Caffe 
library has a Model Zoo where people share their network weights. 

More details: http://cs231n.github.io/transfer-learning/ 
 

https://github.com/BVLC/caffe/wiki/Model-Zoo
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/


Data, data, and data   

1. New dataset is small and similar to original dataset. It is not a 
good idea to fine-tune the ConvNet due to overfitting concerns. 
The best idea might be to train a Linear SVM or Softmax classifier 
on the CNN codes (features extracted). 

2. New dataset is large and similar to the original dataset. Allowed 
fine-tuning through the full network. 

3. New dataset is small but very different from the original dataset. 
Since the data is small, it is likely best to only train a linear 
classifier. Instead, it might work better to train the SVM classifier 
from activations somewhere earlier in the network. 

4. New dataset is large and very different from the original 
dataset. Since the dataset is very large, we may expect that we 
can afford to train a ConvNet from scratch. However, in practice it 
is very often still beneficial to initialize with weights from a 
pretrained model.  we would have enough data and confidence to 
fine-tune through the entire network. 



Deep Learning-based tools  
for medical image analysis 

• DLTK is a neural networks 
toolkit written in python, on top 
of TensorFlow. It is developed to 
enable fast prototyping with a 
low entry threshold and ensure 
reproducibility in image analysis 
applications, with a particular 
focus on medical imaging. 

 
• Jupyter  is a nonprofit 

organization created to "develop 
open-source software, open-
standards, and services for 
interactive computing across 
dozens of programming 
languages".  



Image Classification Challenge 

• IMAGENET : Large Scale Visual Recognition  
– 1000 Classes of objects 

– 14 311 670 images 



Alexnet [Krizhevsky et al, 2012] 



Alexnet [Krizhevsky et al, 2012] 

• First model to perform well on the ImageNet dataset (~11% lower error 
than runner up) 

• Combined techniques used in today’s architectures, like ReLU, data 
augmentation and dropout 

• Used GPUs for training 
• Largely responsible for the deep learning revolution in computer vision 

 



ZFnet [Zeiler and Fergus, 2014] 

 

Image from: Zeiler and Fergus. "Visualizing and understanding convolutional networks." ECCV, 2014. 



Image Classification Challenge 

• IMAGENET : Large Scale Visual Recognition  
– 1000 Classes of objects 

– 14 311 670 images 



VGG [Simonyan and Zisserman, 2014] 

Simpler structure  
only 3x3 convolutions, ReLU and 2x2 max 
pooling 
 
 
Deeper network  
16 and 19 layers (compared to 8 for 
AlexNet) 
 
 
Key idea  
cascading two 3x3 convolutions gives the 
same receptive field as a 5x5 convolution, 
with much less parameters 
 



Inception [Szegedy et al, 2014] 

1) Repeating blocks 
called Inception module 2) Intermediate classification losses 

to inject gradient in middle layers 

3) FC layers replaced by 
average pooling (fewer 
parameters) 



GoogLeNet (Inception V1) 

 

Choice for each layer 
Convolution or pooling ? 
If convolution, what kernel size ? 

Key idea 
Compute all in parallel 
Concatenate results 
Let the learning decide 



AlexNet and GoogLeNet 

 

GoogLeNet 

8 layers 
~62M parameters 

22 layers 
~5M parameters 



Inception V3 

Solution: Reduce dimensionality using bottleneck layers composed of 1x1 
convolutions 

Problem: this gives too many outputs and parameters 



ResNet [He et al, 2016] 

Instead of computing the transformation, compute 
the residual required to have the transformation 

The residual requires less information to 
model, so possibly easier to learn. 
 
Residual connections help gradient flow during 
back-propagation. 
 
Enables very deep networks (over 100 layers) 



Xception 

 



Let’s play with Deep Learning tools! 

• Objective: Classification of medical images 

• Dataset : 75 images (breast and abdomen X-ray) 

• DL architecture: Inception V3 

• Environment:   Jupyter Notebook 

Il tutorial segue nel dettaglio : 
1. Articolo : https://link.springer.com/article/10.1007/s10278-018-0079-6 
2. Github repository & code: 
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearnin
g.ipynb 
 

https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearning.ipynb
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearning.ipynb


Installation on Windows 10 

• CPU (or GPU)  

 

• Anaconda 3 (1.9.7) 

 

• Python 3 (3.6.8) 

 

• Jupyter Notebook (5.7.8) 
– TensorFlow 1.13.1 

– Keras 2.2.4 



Initial steps 
The notebooks are organized into  cells, whereby each cell may be 
run  independently.  

1. Load requirements from the Keras library. 

2. Specify information regarding the images. 



Setting parameters 

1. Set the number of epochs (number of passes 
through the training data) 

2. Set the batch size (number of images processed at 
the same time) 



Model: import InceptionV3 

1. Start with the original Inception V3 model.  

2. Remove top or fully connected layers from 
the original network. 

3. Use pretrained weights from ImageNet. 

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception Architecture 
for computer vision. In Proceedings of the IEEE Conference on Computer Vision and 
Pattern Recognition: 2818–2826, 2016 



Model: redefine top layers 

1. Add new layers on top of the original model. There are many 
possibilities, but here, we add a global average pooling layer, 
a fully connected layer with 256 nodes, dropout, and 
sigmoid activation. 

2. Define an optimizer; in this case, it is the Adam optimizer 
with default settings. 

Kingma D, Ba JA: A method for stochastic optimization. arXiv preprint arXiv 1412:6980, 2014 



Data augmentation 

Rescale images and specify augmentation methods 



Training and validation generator 

Specification about the directory containing the files, size of 
images, and batch size. 
Class mode is set to ‘binary’ for a 2-class problem. 
Generator randomly shuffles and presents images in batches to 
the network. 



Model fitting 

After executing the code above, the model begins to train. In 
only five epochs, the training accuracy equals 89% and 
validation accuracy 100%. The validation accuracy is usually 
lower than the training accuracy, but in this case, it is higher 
likely because there are only 10 validation cases. The training 
and validation loss both decrease, which indicates that the 
model is “learning.” 



Training 

Training metrics:  
 loss, training loss; acc, training accuracy; val_loss, validation 
loss;  val_acc, validation accuracy.  
 
13 refers to the number of batches (13 batches × 5 images per 
batch = 65 training images).  
20 refers to number of epochs. 

 



Accuracy 



Test 

Steps for performing inference on test cases. 
Displaying of image and generating a prediction score. 



Conclusion 

With only 65 training cases, the power of 
transfer learning and deep neural networks, let 
us to build an accurate classifier that can 
differentiate chest vs. abdominal radiographs 
with a small amount of code.  

 

The availability of frameworks and high-level 
libraries makes machine learning more 
accessible in medical imaging. Try them!  

 



Thank you 
for the attention! 


