
Medical Images
and

Neural Networks

Deep Learning architectures

A Tutorial for Beginners

Maria Antonietta Pascali
maria.antonietta.pascali@isti.cnr.it CNR ISTI, Signal and Images Lab

Medical images
Computer vision methods have long been employed to
automatically analyze biomedical images.

Deep learning provides new methods to analyse (huge
amount of) medical images: performing classification,
segmentation, detection, …

Machine Learning for Medical Images

James A. Nichols, Hsien W. Herbert Chan, Matthew A. B. Baker, Machine learning: applications
of artificial intelligence to imaging and diagnosis, Biophys Rev (2019) 11:111–118

Many architectures, many models..

• Data quality and availability

• Transfer learning

In the case of medical datasets, it is common to
use a pre-trained ConvNet on a very large
dataset (e.g. ImageNet, which contains 1.2
million images with 1000 categories), either as
an initialization, or a fixed feature extractor for
the task of interest.

Transfer Learning

• ConvNet as fixed feature extractor
Take a ConvNet pretrained on ImageNet, remove the last fully-connected layer (this
layer’s outputs are the 1000 class scores for a different task like ImageNet), then treat
the rest of the ConvNet as a fixed feature extractor for the new dataset.

• Fine-tuning the ConvNet
The second strategy is to not only replace and retrain the classifier on top of the
ConvNet on the new dataset, but to also fine-tune the weights of the pretrained
network by continuing the backpropagation.

• Pretrained models
Since modern ConvNets take 2-3 weeks to train across multiple GPUs on ImageNet, it

is common to see people release their final ConvNet checkpoints. E.g. the Caffe
library has a Model Zoo where people share their network weights.

More details: http://cs231n.github.io/transfer-learning/

https://github.com/BVLC/caffe/wiki/Model-Zoo
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/

Data, data, and data

1. New dataset is small and similar to original dataset. It is not a
good idea to fine-tune the ConvNet due to overfitting concerns.
The best idea might be to train a Linear SVM or Softmax classifier
on the CNN codes (features extracted).

2. New dataset is large and similar to the original dataset. Allowed
fine-tuning through the full network.

3. New dataset is small but very different from the original dataset.
Since the data is small, it is likely best to only train a linear
classifier. Instead, it might work better to train the SVM classifier
from activations somewhere earlier in the network.

4. New dataset is large and very different from the original
dataset. Since the dataset is very large, we may expect that we
can afford to train a ConvNet from scratch. However, in practice it
is very often still beneficial to initialize with weights from a
pretrained model. we would have enough data and confidence to
fine-tune through the entire network.

Deep Learning-based tools
for medical image analysis

• DLTK is a neural networks
toolkit written in python, on top
of TensorFlow. It is developed to
enable fast prototyping with a
low entry threshold and ensure
reproducibility in image analysis
applications, with a particular
focus on medical imaging.

• Jupyter is a nonprofit

organization created to "develop
open-source software, open-
standards, and services for
interactive computing across
dozens of programming
languages".

Image Classification Challenge

• IMAGENET : Large Scale Visual Recognition
– 1000 Classes of objects

– 14 311 670 images

Alexnet [Krizhevsky et al, 2012]

Alexnet [Krizhevsky et al, 2012]

• First model to perform well on the ImageNet dataset (~11% lower error
than runner up)

• Combined techniques used in today’s architectures, like ReLU, data
augmentation and dropout

• Used GPUs for training
• Largely responsible for the deep learning revolution in computer vision

ZFnet [Zeiler and Fergus, 2014]

Image from: Zeiler and Fergus. "Visualizing and understanding convolutional networks." ECCV, 2014.

Image Classification Challenge

• IMAGENET : Large Scale Visual Recognition
– 1000 Classes of objects

– 14 311 670 images

VGG [Simonyan and Zisserman, 2014]

Simpler structure
only 3x3 convolutions, ReLU and 2x2 max
pooling

Deeper network
16 and 19 layers (compared to 8 for
AlexNet)

Key idea
cascading two 3x3 convolutions gives the
same receptive field as a 5x5 convolution,
with much less parameters

Inception [Szegedy et al, 2014]

1) Repeating blocks
called Inception module 2) Intermediate classification losses

to inject gradient in middle layers

3) FC layers replaced by
average pooling (fewer
parameters)

GoogLeNet (Inception V1)

Choice for each layer
Convolution or pooling ?
If convolution, what kernel size ?

Key idea
Compute all in parallel
Concatenate results
Let the learning decide

AlexNet and GoogLeNet

GoogLeNet

8 layers
~62M parameters

22 layers
~5M parameters

Inception V3

Solution: Reduce dimensionality using bottleneck layers composed of 1x1
convolutions

Problem: this gives too many outputs and parameters

ResNet [He et al, 2016]

Instead of computing the transformation, compute
the residual required to have the transformation

The residual requires less information to
model, so possibly easier to learn.

Residual connections help gradient flow during
back-propagation.

Enables very deep networks (over 100 layers)

Xception

Let’s play with Deep Learning tools!

• Objective: Classification of medical images

• Dataset : 75 images (breast and abdomen X-ray)

• DL architecture: Inception V3

• Environment: Jupyter Notebook

Il tutorial segue nel dettaglio :
1. Articolo : https://link.springer.com/article/10.1007/s10278-018-0079-6
2. Github repository & code:
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearnin
g.ipynb

https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://link.springer.com/article/10.1007/s10278-018-0079-6
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearning.ipynb
https://github.com/paras42/Hello_World_Deep_Learning/blob/master/HelloWorldDeepLearning.ipynb

Installation on Windows 10

• CPU (or GPU)

• Anaconda 3 (1.9.7)

• Python 3 (3.6.8)

• Jupyter Notebook (5.7.8)
– TensorFlow 1.13.1

– Keras 2.2.4

Initial steps
The notebooks are organized into cells, whereby each cell may be
run independently.

1. Load requirements from the Keras library.

2. Specify information regarding the images.

Setting parameters

1. Set the number of epochs (number of passes
through the training data)

2. Set the batch size (number of images processed at
the same time)

Model: import InceptionV3

1. Start with the original Inception V3 model.

2. Remove top or fully connected layers from
the original network.

3. Use pretrained weights from ImageNet.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception Architecture
for computer vision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition: 2818–2826, 2016

Model: redefine top layers

1. Add new layers on top of the original model. There are many
possibilities, but here, we add a global average pooling layer,
a fully connected layer with 256 nodes, dropout, and
sigmoid activation.

2. Define an optimizer; in this case, it is the Adam optimizer
with default settings.

Kingma D, Ba JA: A method for stochastic optimization. arXiv preprint arXiv 1412:6980, 2014

Data augmentation

Rescale images and specify augmentation methods

Training and validation generator

Specification about the directory containing the files, size of
images, and batch size.
Class mode is set to ‘binary’ for a 2-class problem.
Generator randomly shuffles and presents images in batches to
the network.

Model fitting

After executing the code above, the model begins to train. In
only five epochs, the training accuracy equals 89% and
validation accuracy 100%. The validation accuracy is usually
lower than the training accuracy, but in this case, it is higher
likely because there are only 10 validation cases. The training
and validation loss both decrease, which indicates that the
model is “learning.”

Training

Training metrics:
 loss, training loss; acc, training accuracy; val_loss, validation
loss; val_acc, validation accuracy.

13 refers to the number of batches (13 batches × 5 images per
batch = 65 training images).
20 refers to number of epochs.

Accuracy

Test

Steps for performing inference on test cases.
Displaying of image and generating a prediction score.

Conclusion

With only 65 training cases, the power of
transfer learning and deep neural networks, let
us to build an accurate classifier that can
differentiate chest vs. abdominal radiographs
with a small amount of code.

The availability of frameworks and high-level
libraries makes machine learning more
accessible in medical imaging. Try them!

Thank you
for the attention!

